TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024 HOMEWORK 6

MATHIAS BRAUN AND WENHAO ZHAO

Homework 6.1 (Holomorphic interpolation*). Let $(a_n)_{n \in \mathbb{N}}$ be sequence without an accumulation point and let $(b_n)_{n \in \mathbb{N}}$ be an arbitrary sequence (both in \mathbb{C}). Show there exists a holomorphic function $f: \mathbb{C} \to \mathbb{C}$ such that $f(a_n) = b_n$ for every $n \in \mathbb{N}^1$.

Homework 6.2 (Representation of meromorphic functions as quotients). Let $h: \mathbb{C} \to \mathbb{C}$ be a meromorphic function, i.e. its singularities are isolated and only poles of finite order. Show that there exist two entire functions $f,g:\mathbb{C}\to\mathbb{C}$ with no common zeros with h=f/g.

Homework 6.3 (Weierstraß product theorem on open sets). Let $U \subset \mathbb{C}$ be an open set and let $(a_n)_{n \in \mathbb{N}}$ be a discrete sequence in U. Set $o_n := \#\{k \in \mathbb{N} : a_k = a_n\}$ and assume $o_n < \infty$ for every $n \in \mathbb{N}$. We claim there exists a holomorphic function $f : U \to \mathbb{C}$ such that $Z(f) = \{a_n : n \in \mathbb{N}\}$ and $o_{a_n}(f) = o_n$ for all $n \in \mathbb{N}$. Moreover, as we shall see in the proof the function f can be taken as an infinite product. The argument splits into two steps. Similarly to the Mittag-Leffler theorem we recenter part of the Weierstraß factors and replace $E_n(z/a_n)$ by $E_n((a_n - c_n)/(z - c_n))$ for a suitable sequence $(c_n)_{n \in \mathbb{N}}$. We denote by $S' \subset \mathbb{C}$ the set of accumulation points of the sequence $(a_n)_{n \in \mathbb{N}}$. If $S' = \emptyset$ there is nothing to prove as we can apply Theorem 4.2 from the lecture notes. Hence assume that $S' \neq \emptyset$.

a. Suppose there exists a sequence $(c_n)_{n \in \mathbb{N}}$ in S' such that $|a_n - c_n| \to 0$ as $n \to \infty$. Show the infinite product

$$f(z) := \prod_{n=1}^{\infty} E_n \left[\frac{a_n - c_n}{z - c_n} \right]$$

converges locally normally on U and obeys $Z(f) = \{a_n : n \in \mathbb{N}\}$ and $o_{a_n}(f) = o_n$ for every $n \in \mathbb{N}$.

b. Split the set $S := \{a_n : n \in \mathbb{N}\}$ as in Lemma 2.7 from the lecture notes and use Lemma 2.8 to conclude the proof by combining a. and Theorem 4.2.

Homework 6.4 (First applications of Picard's little theorem). a. Show every meromorphic function f that omits three distinct values $a, b, c \in \mathbb{C}$ is constant.

- b. Give an example of a meromorphic function that omits the two values $0, 1 \in \mathbb{C}$.
- c. Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Show $f \circ f$ has a fixed point unless f is affine but not linear, i.e. f(z) = z + b for some $b \in \mathbb{C} \setminus \{0\}^2$.

$$g(z) \coloneqq \frac{f(f(z)) - z}{f(z) - z}$$

Show it is constant and differentiate it. Then deduce $f' \circ f$ omits the value 0 and said constant. Finally, show this implies that f' is constant.

Date: November 4, 2024.

¹**Hint.** Combine the Weierstraß product theorem with the Mittag–Leffler theorem for a suitable sequence of principal parts.

²**Hint.** Consider the assignment